Single-domain antibody fragments with high conformational stability.
نویسندگان
چکیده
A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for lysozymes, beta-lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical-induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two-state mechanism (N <--> U), where only the native and the denatured states are significantly populated. Thermally-induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat-induced denaturation (apparent T(m) = 60-80 degrees C), and display high conformational stabilities (DeltaG(H(2)O) = 30-60 kJ mole(-1)). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy-chain antibody fragments are of special interest for biotechnological and medical applications.
منابع مشابه
Cloning and Expression of Recombinant Camelid Single-Domain Antibody in Tobacco
Antibodies provide a suitable tool in fundamental research and their high affinity and specificity make them invaluable for diagnostic and therapeutic applications. A promising alternative to conventional antibodies are the heavy chain antibodies (VHH) of Camelidae having short length, high solubility and stability are preferred to other antibody derivatives. In this study, our goal was product...
متن کاملRetroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells
Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...
متن کاملDomain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability.
Recombinant antibody fragments, most notably Fab and scFv, have become important tools in research, diagnostics and therapy. Since different recombinant antibody formats exist, it is crucial to understand the difference in their respective biophysical properties. We assessed the potential stability benefits of changing the scFv into the Fab format, the influence of the variable domains on the s...
متن کاملConstruction of recombinant Pichia pastoris expressing single-chain antibody fragment against extracellular domain of EpCAM
Introduction: Epithelial cell adhesion molecule (EpCAM) is highly expressed on epithelial tumors. So, EpCAM is a valuable antigen for targeted therapy. Using monoclonal antibodies (mabs) is an attractive approach for targeted cancer therapy. Importantly, limitations of intact mabs including large size led to the development of antibody fragments such as single chain fragment variable (scfv). Pi...
متن کاملStrong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation.
Antibody microarrays are among the novel class of rapidly emerging proteomic technologies that will allow us to efficiently perform specific diagnoses and proteomic analysis. Recombinant antibody fragments are especially suited for this approach but their stability is often a limiting factor. Camelids produce functional antibodies devoid of light chains (HCAbs) of which the single N-terminal do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2002